enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.

  3. Hosmer–Lemeshow test - Wikipedia

    en.wikipedia.org/wiki/Hosmer–Lemeshow_test

    The addition of the quadratic term caffeine 2 to the regression model would allow for the increasing and then decreasing relationship of grade to caffeine dose. The logistic model including the caffeine 2 term indicates that the quadratic caffeine^2 term is significant (p = 0.003) while the linear caffeine term is not significant (p = 0.21).

  4. Seemingly unrelated regressions - Wikipedia

    en.wikipedia.org/wiki/Seemingly_unrelated...

    In econometrics, the seemingly unrelated regressions (SUR) [1]: 306 [2]: 279 [3]: 332 or seemingly unrelated regression equations (SURE) [4] [5]: 2 model, proposed by Arnold Zellner in (1962), is a generalization of a linear regression model that consists of several regression equations, each having its own dependent variable and potentially ...

  5. Omitted-variable bias - Wikipedia

    en.wikipedia.org/wiki/Omitted-variable_bias

    The second term after the equal sign is the omitted-variable bias in this case, which is non-zero if the omitted variable z is correlated with any of the included variables in the matrix X (that is, if X′Z does not equal a vector of zeroes).

  6. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  7. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. [1] It has been used in many fields including econometrics, chemistry, and engineering. [2]

  8. First-difference estimator - Wikipedia

    en.wikipedia.org/wiki/First-Difference_Estimator

    In statistics and econometrics, the first-difference (FD) estimator is an estimator used to address the problem of omitted variables with panel data. It is consistent under the assumptions of the fixed effects model.

  9. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    Here x ≥ 0 means that each component of the vector x should be non-negative, and ‖·‖ 2 denotes the Euclidean norm. Non-negative least squares problems turn up as subproblems in matrix decomposition, e.g. in algorithms for PARAFAC [2] and non-negative matrix/tensor factorization. [3] [4] The latter can be considered a generalization of ...