Search results
Results from the WOW.Com Content Network
A fractional-n frequency synthesizer can be constructed using two integer dividers, a divide-by-N, and a divide-by-(N + 1) frequency divider. With a modulus controller, N is toggled between the two values so that the VCO alternates between one locked frequency and the other. The VCO stabilizes at a frequency that is the time average of the two ...
A non-integer multiple of the reference frequency can also be created by replacing the simple divide-by-N counter in the feedback path with a programmable pulse swallowing counter. This technique is usually referred to as a fractional-N synthesizer or fractional-N PLL. [dubious – discuss] The oscillator generates a periodic output signal.
This allows the synthesis of frequencies that are N/M times the reference frequency. This can be accomplished in a different manner by periodically changing the integer value of an integer-N frequency divider, effectively resulting in a multiplier with both whole number and fractional component. Such a multiplier is called a fractional-N ...
Thus it will produce an output of 100 kHz for a count of 1, 200 kHz for a count of 2, 1 MHz for a count of 10 and so on. Note that only whole multiples of the reference frequency can be obtained with the simplest integer N dividers. Fractional N dividers are readily available. [20]
The PLL is locked at 917.94 MHz (f o) with a channel spacing frequency of 30 kHz (f r). The total integer count, therefore, is 30,598. Dividing this by 128 (M) yields a quotient of 239 with a remainder of 6, N, and A, respectively.
A first linear mathematical model of second-order CP-PLL was suggested by F. Gardner in 1980. [2] A nonlinear model without the VCO overload was suggested by M. van Paemel in 1994 [3] and then refined by N. Kuznetsov et al. in 2019. [4] The closed form mathematical model of CP-PLL taking into account the VCO overload is derived in. [5]
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
The vernier method is more involved. [16] The method involves a triggerable oscillator [17] and a coincidence circuit. At the event, the integer clock count is stored and the oscillator is started. The triggered oscillator has a slightly different frequency than the clock oscillator.