Search results
Results from the WOW.Com Content Network
The sum of squares of residuals, also called the residual sum of squares: The total sum of squares (proportional to the variance of the data): The most general definition of the coefficient of determination is. In the best case, the modeled values exactly match the observed values, which results in and R2 = 1.
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 2 × 2πr × r, holds for a circle.
In vector calculus, the Jacobian matrix (/ dʒəˈkoʊbiən /, [1][2][3] / dʒɪ -, jɪ -/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output ...
Calculus. In mathematics, the Hessian matrix, Hessian or (less commonly) Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables.
Given a complex number z, there is not a unique complex number w satisfying erf w = z, so a true inverse function would be multivalued. However, for −1 < x < 1 , there is a unique real number denoted erf −1 x satisfying erf ( erf − 1 x ) = x . {\displaystyle \operatorname {erf} \left(\operatorname {erf} ^{-1}x\right)=x.}
Determinant. In mathematics, the determinant is a scalar -valued function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det (A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if ...
Euclidean distance. In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is occasionally called the Pythagorean distance. These names come from the ancient Greek ...