Search results
Results from the WOW.Com Content Network
where the final substitution, N 0 = e C, is obtained by evaluating the equation at t = 0, as N 0 is defined as being the quantity at t = 0. This is the form of the equation that is most commonly used to describe exponential decay. Any one of decay constant, mean lifetime, or half-life is sufficient to characterise the decay.
Time constant. In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system. [1][note 1] The time constant is the main characteristic unit of a first-order LTI system. It gives speed of the response.
Coefficient of restitution. A bouncing ball captured with a stroboscopic flash at 25 images per second: Ignoring air resistance, the square root of the ratio of the height of one bounce to that of the preceding bounce gives the coefficient of restitution for the ball/surface impact. In physics, the coefficient of restitution (COR, also denoted ...
A percentage change is a way to express a change in a variable. It represents the relative change between the old value and the new one. [6]For example, if a house is worth $100,000 today and the year after its value goes up to $110,000, the percentage change of its value can be expressed as = = %.
In mathematics, the root mean square (abbrev. RMS, RMS or rms) of a set of numbers is the square root of the set's mean square. [1] Given a set , its RMS is denoted as either or . The RMS is also known as the quadratic mean (denoted ), [2][3] a special case of the generalized mean. The RMS of a continuous function is denoted and can be defined ...
Propagation of uncertainty. In statistics, propagation of uncertainty (or propagation of error) is the effect of variables ' uncertainties (or errors, more specifically random errors) on the uncertainty of a function based on them. When the variables are the values of experimental measurements they have uncertainties due to measurement ...
In contrast to the mean absolute percentage error, SMAPE has both a lower and an upper bound. Indeed, the formula above provides a result between 0% and 200%. Indeed, the formula above provides a result between 0% and 200%.
x erf x 1 − erf x; 0: 0: 1: 0.02: 0.022 564 575: 0.977 435 425: 0.04: 0.045 111 106: 0.954 888 894: 0.06: 0.067 621 594: 0.932 378 406: 0.08: 0.090 078 126: 0.909 ...