Search results
Results from the WOW.Com Content Network
The Minkowski difference (also Minkowski subtraction, Minkowski decomposition, or geometric difference) [1] is the corresponding inverse, where () produces a set that could be summed with B to recover A. This is defined as the complement of the Minkowski sum of the complement of A with the reflection of B about the origin. [2]
Proof of the sum-and-difference-to-product cosine identity for prosthaphaeresis calculations using an isosceles triangle. The product-to-sum identities [28] or prosthaphaeresis formulae can be proven by expanding their right-hand sides using the angle addition theorems.
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
The next expression states equivalently that the variance of the sum is the sum of the diagonal of covariance matrix plus two times the sum of its upper triangular elements (or its lower triangular elements); this emphasizes that the covariance matrix is symmetric. This formula is used in the theory of Cronbach's alpha in classical test theory.
The formula calculator concept can be applied to all types of calculator, including arithmetic, scientific, statistics, financial and conversion calculators. The calculation can be typed or pasted into an edit box of: A software package that runs on a computer, for example as a dialog box. An on-line formula calculator hosted on a web site.
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. [1] Divided differences is a recursive division process.
List of trigonometric identities#Angle sum and difference identities To a section : This is a redirect from a topic that does not have its own page to a section of a page on the subject. For redirects to embedded anchors on a page, use {{ R to anchor }} instead .
In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + h / 2 ) and f ′(x − h / 2 ) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f: