enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oceanic crust - Wikipedia

    en.wikipedia.org/wiki/Oceanic_crust

    The lines represent tectonic plate boundaries. Oceanic crust is the uppermost layer of the oceanic portion of the tectonic plates. It is composed of the upper oceanic crust, with pillow lavas and a dike complex, and the lower oceanic crust, composed of troctolite, gabbro and ultramafic cumulates. [1][2] The crust overlies the rigid uppermost ...

  3. Internal structure of Earth - Wikipedia

    en.wikipedia.org/wiki/Internal_structure_of_Earth

    Earth's crust and mantle, Mohorovičić discontinuity between bottom of crust and solid uppermost mantle. Earth's mantle extends to a depth of 2,890 km (1,800 mi), making it the planet's thickest layer. [20] [This is 45% of the 6,371 km (3,959 mi) radius, and 83.7% of the volume - 0.6% of the volume is the crust].

  4. Mantle convection - Wikipedia

    en.wikipedia.org/wiki/Mantle_convection

    Mantle convection. Simplified model of mantle convection: [1] Whole-mantle convection. Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [2][3] Mantle convection causes tectonic plates to move around the Earth's surface. [4]

  5. Earth's mantle - Wikipedia

    en.wikipedia.org/wiki/Earth's_mantle

    The internal structure of Earth. Earth's mantle is a layer of silicate rock between the crust and the outer core. It has a mass of 4.01 × 10 24 kg (8.84 × 10 24 lb) and makes up 67% of the mass of Earth. [1] It has a thickness of 2,900 kilometers (1,800 mi) [1] making up about 46% of Earth's radius and 84% of Earth's volume.

  6. Oceanic trench - Wikipedia

    en.wikipedia.org/wiki/Oceanic_trench

    Oceanic crust is formed at an oceanic ridge, while the lithosphere is subducted back into the asthenosphere at trenches. Oceanic trenches are prominent, long, narrow topographic depressions of the ocean floor. They are typically 50 to 100 kilometers (30 to 60 mi) wide and 3 to 4 km (1.9 to 2.5 mi) below the level of the surrounding oceanic ...

  7. Slab suction - Wikipedia

    en.wikipedia.org/wiki/Slab_suction

    Slab suction. Slab suction is one of the four main forces that drive plate tectonics. It creates a force that pulls down plates as they are subducting and speeds up their movement, creating larger amounts of displacement. It is because of these forces, slab pull, ridge push, mantle convection, and slab suction that the Earth's crust is able to ...

  8. Mohorovičić discontinuity - Wikipedia

    en.wikipedia.org/wiki/Mohorovičić_discontinuity

    Earth's crust and mantle, Moho discontinuity between bottom of crust and solid uppermost mantle. The Mohorovičić discontinuity (/ ˌ m oʊ h ə ˈ r oʊ v ɪ tʃ ɪ tʃ / MOH-hə-ROH-vih-chitch; Croatian: [moxorôʋiːtʃitɕ]) [1] – usually called the Moho discontinuity, Moho boundary, or just Moho – is the boundary between the crust and the mantle of Earth.

  9. Upper mantle - Wikipedia

    en.wikipedia.org/wiki/Upper_mantle

    The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about 10 km (6.2 mi) under the oceans and about 35 km (22 mi) under the continents) and ends at the top of the lower mantle at 670 km (420 mi). Temperatures range from approximately 500 K (227 °C; 440 °F) at the upper boundary ...