enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Terminal velocity. The downward force of gravity (Fg) equals the restraining force of drag (Fd) plus the buoyancy. The net force on the object is zero, and the result is that the velocity of the object remains constant. Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example).

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances. If an object fell 10 000 m to Earth, then the results of both ...

  4. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    With air resistance acting on an object that has been dropped, the object will eventually reach a terminal velocity, which is around 53 m/s (190 km/h or 118 mph [4]) for a human skydiver. The terminal velocity depends on many factors including mass, drag coefficient, and relative surface area and will only be achieved if the fall is from ...

  5. Galileo's Leaning Tower of Pisa experiment - Wikipedia

    en.wikipedia.org/wiki/Galileo's_Leaning_Tower_of...

    Terminal velocity (An object dropped through air from a sufficient height will reach a steady speed, called the terminal velocity, when the aerodynamic drag force pushing up on the body balances the gravitational force (weight) pulling the body down.) Nordtvedt effect; Newton's second law; Law of Inertia

  6. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Creeping flow past a falling sphere in a fluid (e.g., a droplet of fog falling through the air): streamlines, drag force F d and force by gravity F g. At terminal (or settling) velocity, the excess force F e due to the difference between the weight and buoyancy of the sphere (both caused by gravity [7]) is given by:

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    The first general equation of motion developed was Newton's second law of motion. In its most general form it states the rate of change of momentum p = p(t) = mv(t) of an object equals the force F = F(x(t), v(t), t) acting on it, [13]: 1112. The force in the equation is not the force the object exerts.

  8. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    Drag (physics) In fluid dynamics, drag, sometimes referred to as fluid resistance, is a force acting opposite to the relative motion of any object, moving with respect to a surrounding fluid. [1] This can exist between two fluid layers, two solid surfaces, or between a fluid and solid surface. Drag forces tend to decrease fluid velocity ...

  9. Sediment transport - Wikipedia

    en.wikipedia.org/wiki/Sediment_transport

    For particles with a small settling velocity, diffusion will increase the complexity of the particle's path to the bottom and the time it takes to settle compared to particles with high settling velocities. The settling velocity (also called the "fall velocity" or "terminal velocity") is a function of the particle Reynolds number.