enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wallace–Bolyai–Gerwien theorem - Wikipedia

    en.wikipedia.org/wiki/Wallace–Bolyai–Gerwien...

    Alternatively, a triangle can be transformed into one such rectangle by first turning it into a parallelogram and then turning this into such a rectangle. By doing this for each triangle, the polygon can be decomposed into a rectangle with unit width and height equal to its area.

  3. Sierpiński triangle - Wikipedia

    en.wikipedia.org/wiki/Sierpiński_triangle

    The canonical Sierpiński triangle uses an equilateral triangle with a base parallel to the horizontal axis (first image). Shrink the triangle to ⁠ 1 / 2 ⁠ height and ⁠ 1 / 2 ⁠ width, make three copies, and position the three shrunken triangles so that each triangle touches the two other triangles at a corner (image 2).

  4. Reuleaux triangle - Wikipedia

    en.wikipedia.org/wiki/Reuleaux_triangle

    Among all shapes of constant width that avoid all points of an integer lattice, the one with the largest width is a Reuleaux triangle. It has one of its axes of symmetry parallel to the coordinate axes on a half-integer line. Its width, approximately 1.54, is the root of a degree-6 polynomial with integer coefficients. [17] [19] [20]

  5. Curve of constant width - Wikipedia

    en.wikipedia.org/wiki/Curve_of_constant_width

    The Blaschke–Lebesgue theorem says that the Reuleaux triangle has the least area of any convex curve of given constant width. [19] Every proper superset of a body of constant width has strictly greater diameter, and every Euclidean set with this property is a body of constant width.

  6. Dilation (morphology) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(morphology)

    Dilation is commutative, also given by = =. If B has a center on the origin, then the dilation of A by B can be understood as the locus of the points covered by B when the center of B moves inside A. The dilation of a square of size 10, centered at the origin, by a disk of radius 2, also centered at the origin, is a square of side 14, with ...

  7. Pythagoras tree (fractal) - Wikipedia

    en.wikipedia.org/wiki/Pythagoras_tree_(fractal)

    An interesting set of variations can be constructed by maintaining an isosceles triangle but changing the base angle (90 degrees for the standard Pythagoras tree). In particular, when the base half-angle is set to (30°) = arcsin(0.5), it is easily seen that the size of the squares remains constant. The first overlap occurs at the fourth iteration.

  8. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    Draw an equilateral triangle ABC with side length 2 and with point D as the midpoint of segment BC. Draw an altitude line from A to D. Then ABD is a 30°–60°–90° triangle with hypotenuse of length 2, and base BD of length 1. The fact that the remaining leg AD has length √ 3 follows immediately from the Pythagorean theorem.

  9. Triangular function - Wikipedia

    en.wikipedia.org/wiki/Triangular_function

    Often this is an isosceles triangle of height 1 and base 2 in which case it is referred to as the triangular function. Triangular functions are useful in signal processing and communication systems engineering as representations of idealized signals, and the triangular function specifically as an integral transform kernel function from which ...