Search results
Results from the WOW.Com Content Network
The area of the base of a cylinder is the area of a circle (in this case we define that the circle has a radius with measure ): B = π r 2 {\displaystyle B=\pi r^{2}} . To calculate the total area of a right circular cylinder, you simply add the lateral area to the area of the two bases:
For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth.
The lateral area, L, of a circular cylinder, which need not be a right cylinder, is more generally given by =, where e is the length of an element and p is the perimeter of a right section of the cylinder. [9] This produces the previous formula for lateral area when the cylinder is a right circular cylinder.
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
Quarter-circular area [2] ... the volume and the centroid coordinates ... Right circular cylinder: r = the radius of the cylinder
The volume (V) and surface area (S) of a toroid are given by the following equations, where r is the radius of the circular section, and R is the radius of the overall shape. = = Pappus's centroid theorem generalizes the formulas here to arbitrary surfaces of revolution.
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
Roundness = Perimeter 2 / 4 π × Area . This ratio will be 1 for a circle and greater than 1 for non-circular shapes. Another definition is the inverse of that: Roundness = 4 π × Area / Perimeter 2 , which is 1 for a perfect circle and goes down as far as 0 for highly non-circular shapes.