Search results
Results from the WOW.Com Content Network
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
In practice, since temperature usually drops with altitude, the graphs are usually mostly vertical (see examples linked to below). The major use for skew-T log-P diagrams is the plotting of radiosonde soundings , which give a vertical profile of the temperature and dew point temperature throughout the troposphere and lower stratosphere .
For example, if the gas expands slowly against the piston, the work done by the gas to raise the piston is the force F times the distance d. But the force is just the pressure P of the gas times the area A of the piston, F = PA. [4] Thus W = Fd; W = PAd; W = P(V 2 − V 1) figure 3
In atmospheric thermodynamics, the virtual temperature of a moist air parcel is the temperature at which a theoretical dry air parcel would have a total pressure and density equal to the moist parcel of air. [1]
Forces that cause atmospheric motion include the pressure gradient force, gravity, and viscous friction. Together, they create the forces that accelerate our atmosphere. The pressure gradient force causes an acceleration forcing air from regions of high pressure to regions of low pressure. Mathematically, this can be written as:
An emagram is one of four thermodynamic diagrams used to display temperature lapse rate and moisture content profiles in the atmosphere. The emagram has axes of temperature (T) and pressure (p). In the emagram, the dry adiabats make an angle of about 45 degrees with the isobars, isotherms are vertical and isopleths of saturation mixing ratio ...
In atmospheric science, equivalent temperature is the temperature of air in a parcel from which all the water vapor has been extracted by an adiabatic process. Air contains water vapor that has been evaporated into it from liquid sources (lakes, sea, etc...). The energy needed to do that has been taken from the air.
The LCL can be either computed or determined graphically using standard thermodynamic diagrams such as the skew-T log-P diagram or the tephigram.Nearly all of these formulations make use of the relationship between the LCL and the dew point, which is the temperature to which an air parcel needs to be cooled isobarically until its RH just reaches 100%.