enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that is an integer. When a and b are both integers, and b is a multiple of ...

  3. Multiplication table - Wikipedia

    en.wikipedia.org/wiki/Multiplication_table

    Cycles of the unit digit of multiples of integers ending in 1, 3, 7 and 9 (upper row), and 2, 4, 6 and 8 (lower row) on a telephone keypad. Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5.

  4. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.

  5. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    Using the example above: 16,499,205,854,376 has four of the digits 1, 4 and 7 and four of the digits 2, 5 and 8; Since 44 = 0 is a multiple of 3, the number 16,499,205,854,376 is divisible by 3. Subtracting 2 times the last digit from the rest gives a multiple of 3. (Works because 21 is divisible by 3) 405: 40 - 5 x 2 = 40 - 10 = 30 = 3 x 10 4

  6. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    For example, 4 multiplied by 3, often written as and spoken as "3 times 4", can be calculated by adding 3 copies of 4 together: 3 × 4 = 4 + 4 + 4 = 12. {\displaystyle 3\times 4=4+4+4=12.} Here, 3 (the multiplier ) and 4 (the multiplicand ) are the factors , and 12 is the product .

  7. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    Other small Pythagorean triples such as (6, 8, 10) are not listed because they are not primitive; for instance (6, 8, 10) is a multiple of (3, 4, 5). Each of these points (with their multiples) forms a radiating line in the scatter plot to the right. Additionally, these are the remaining primitive Pythagorean triples of numbers up to 300:

  8. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    In additive number theory, Fermat 's theorem on sums of two squares states that an odd prime p can be expressed as: with x and y integers, if and only if. The prime numbers for which this is true are called Pythagorean primes. For example, the primes 5, 13, 17, 29, 37 and 41 are all congruent to 1 modulo 4, and they can be expressed as sums of ...

  9. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The difference of two squares is used to find the linear factors of the sum of two squares, using complex number coefficients. For example, the complex roots of can be found using difference of two squares: (since ) Therefore, the linear factors are and . Since the two factors found by this method are complex conjugates, we can use this in ...