enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Right ascension - Wikipedia

    en.wikipedia.org/wiki/Right_ascension

    Right ascension (abbreviated RA; symbol α) is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the (hour circle of the) point in question above the Earth. [ 1 ] When paired with declination, these astronomical coordinates specify the location of a point on the ...

  3. Hour angle - Wikipedia

    en.wikipedia.org/wiki/Hour_angle

    The cosine of the hour angle (cos(h)) is used to calculate the solar zenith angle. At solar noon, h = 0.000 so cos(h) = 1, and before and after solar noon the cos(± h) term = the same value for morning (negative hour angle) or afternoon (positive hour angle), so that the Sun is at the same altitude in the sky at 11:00AM and 1:00PM solar time. [5]

  4. Equatorial coordinate system - Wikipedia

    en.wikipedia.org/wiki/Equatorial_coordinate_system

    Alternatively to right ascension, hour angle (abbreviated HA or LHA, local hour angle), a left-handed system, measures the angular distance of an object westward along the celestial equator from the observer's meridian to the hour circle passing through the object. Unlike right ascension, hour angle is always increasing with the rotation of Earth.

  5. Longitude of the ascending node - Wikipedia

    en.wikipedia.org/wiki/Longitude_of_the_ascending...

    The longitude of the ascending node (bright green) as a part of a diagram of orbital parameters. The longitude of the ascending node, also known as the right ascension of the ascending node, is one of the orbital elements used to specify the orbit of an object in space. Denoted with the symbol Ω, it is the angle from a specified reference ...

  6. Astronomical coordinate systems - Wikipedia

    en.wikipedia.org/wiki/Astronomical_coordinate...

    Angles in the hours ( h), minutes ( m), and seconds ( s) of time measure must be converted to decimal degrees or radians before calculations are performed. 1 h = 15°; 1 m = 15′; 1 s = 15″ Angles greater than 360° (2 π ) or less than 0° may need to be reduced to the range 0°−360° (0–2 π ) depending upon the particular calculating ...

  7. Sidereal time - Wikipedia

    en.wikipedia.org/wiki/Sidereal_time

    Animation showing the difference between a sidereal day and a solar day. Sidereal time ("sidereal" pronounced / saɪˈdɪəriəl, sə -/ sy-DEER-ee-əl, sə-) is a system of timekeeping used especially by astronomers. Using sidereal time and the celestial coordinate system, it is easy to locate the positions of celestial objects in the night sky.

  8. Ecliptic coordinate system - Wikipedia

    en.wikipedia.org/wiki/Ecliptic_coordinate_system

    Because it is a right-handed system, ecliptic longitude is measured positive eastwards in the fundamental plane (the ecliptic) from 0° to 360°. Because of axial precession , the ecliptic longitude of most "fixed stars" (referred to the equinox of date) increases by about 50.3 arcseconds per year, or 83.8 arcminutes per century, the speed of ...

  9. Proper motion - Wikipedia

    en.wikipedia.org/wiki/Proper_motion

    A proper motion of 1 arcsec per year 1 light-year away corresponds to a relative transverse speed of 1.45 km/s. Barnard's Star's transverse speed is 90 km/s and its radial velocity is 111 km/s (perpendicular (at a right, 90° angle), which gives a true or "space" motion of 142 km/s. True or absolute motion is more difficult to measure than the ...