Search results
Results from the WOW.Com Content Network
Formally, a rational map: between two varieties is an equivalence class of pairs (,) in which is a morphism of varieties from a non-empty open set to , and two such pairs (,) and (′ ′, ′) are considered equivalent if and ′ ′ coincide on the intersection ′ (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).
For example, the conic x 2 + y 2 + z 2 = 0 in P 2 over the real numbers R is uniruled but not ruled. (The associated curve over the complex numbers C is isomorphic to P 1 and hence is ruled.) In the positive direction, every uniruled variety of dimension at most 2 over an algebraically closed field of characteristic zero is ruled.
A birational map from X to Y is a rational map f : X ⇢ Y such that there is a rational map Y ⇢ X inverse to f.A birational map induces an isomorphism from a nonempty open subset of X to a nonempty open subset of Y, and vice versa: an isomorphism between nonempty open subsets of X, Y by definition gives a birational map f : X ⇢ Y.
Cognitive mapping is the implicit, mental mapping the explicit part of the same process. In most cases, a cognitive map exists independently of a mental map, an article covering just cognitive maps would remain limited to theoretical considerations. Mental mapping is typically associated with landmarks, locations, and geography when demonstrated.
The domain of a rational function f is not V but the complement of the subvariety (a hypersurface) where the denominator of f vanishes. As with regular maps, one may define a rational map from a variety V to a variety V'. As with the regular maps, the rational maps from V to V' may be identified to the field homomorphisms from k(V') to k(V).
If you have had trouble saving for retirement, putting money away for a down payment, creating a budget, saving for family vacation or other money goals, don't feel too bad, said Brad Klontz, a...
In mathematics, in the representation theory of algebraic groups, a linear representation of an algebraic group is said to be rational if, viewed as a map from the group to the general linear group, it is a rational map of algebraic varieties. Finite direct sums and products of rational representations are rational.
Shopping, preparing and cleaning up after a meal involves a lot of labor (and a fair amount of time). Plus, the potential for mealtime indecision is higher than ever, thanks to the countless ...