Search results
Results from the WOW.Com Content Network
One of the constituent parts of the ALPAC report was a study comparing different levels of human translation with machine translation output, using human subjects as judges. The human judges were specially trained for the purpose. The evaluation study compared an MT system translating from Russian into English with human translators, on two ...
Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia.
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU.
A rendition of the Vauquois triangle, illustrating the various approaches to the design of machine translation systems.. The direct, transfer-based machine translation and interlingual machine translation methods of machine translation all belong to RBMT but differ in the depth of analysis of the source language and the extent to which they attempt to reach a language-independent ...
For text dictation it is generally agreed that performance accuracy at a rate below 95% is not acceptable, but this again may be syntax and/or domain specific, e.g. whether there is time pressure on users to complete the task, whether there are alternative methods of completion, and so on.
This raises the issue of trustworthiness when relying on a machine translation system embedded in a Life-critical system in which the translation system has input to a Safety Critical Decision Making process. Conjointly it raises the issue of whether in a given use the software of the machine translation system is safe from hackers.
LEPOR [4] is designed with the factors of enhanced length penalty, precision, n-gram word order penalty, and recall.The enhanced length penalty ensures that the hypothesis translation, which is usually translated by machine translation systems, is punished if it is longer or shorter than the reference translation.
Due to the risk of mistranslations arising from machine translators, researchers recommend that machine translations should be reviewed by human translators for accuracy, and some courts prohibit its use in formal proceedings. [62] The use of machine translation in law has raised concerns about translation errors and client confidentiality.