Search results
Results from the WOW.Com Content Network
The RS-68 (Rocket System-68) was a liquid-fuel rocket engine that used liquid hydrogen (LH 2) and liquid oxygen (LOX) as propellants in a gas-generator cycle. It was the largest hydrogen-fueled rocket engine ever flown. [3] Designed and manufactured in the United States by Rocketdyne (later Pratt & Whitney Rocketdyne and Aerojet Rocketdyne).
The RL10 is a liquid-fuel cryogenic rocket engine built in the United States by Aerojet Rocketdyne that burns cryogenic liquid hydrogen and liquid oxygen propellants. Modern versions produce up to 110 kN (24,729 lb f) of thrust per engine in vacuum. RL10 versions were produced for the Centaur upper stage of the Atlas V and the DCSS of the Delta IV
The rocket is launched using liquid hydrogen and liquid oxygen cryogenic propellants. Rocket propellant is used as reaction mass ejected from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.
The major manufacturer of German rocket engines for military use, the HWK firm, [8] manufactured the RLM-numbered 109-500-designation series of rocket engine systems, and either used hydrogen peroxide as a monopropellant for Starthilfe rocket-propulsive assisted takeoff needs; [9] or as a form of thrust for MCLOS-guided air-sea glide bombs; [10 ...
Max Valier was a co-founder of an amateur research group, the VfR, working on liquid rockets in the early 1930s, and many of whose members eventually became important rocket technology pioneers, including Wernher von Braun. Von Braun served as head of the army research station that designed the V-2 rocket weapon for the Nazis.
Cutaway diagram of Kiwi rocket engine. Liquid hydrogen was theoretically the best possible propellant, but in the early 1950s it was expensive, and available only in small quantities. [18] In 1952, the AEC and the National Bureau of Standards had opened a plant near Boulder, Colorado, to produce liquid hydrogen for the thermonuclear weapons ...
H3 launch vehicles are liquid-propellant rockets with strap-on solid rocket boosters and are launched from Tanegashima Space Center in Japan. Mitsubishi Heavy Industries (MHI) and JAXA are responsible for the design, manufacture, and operation of the H3. The H3 is the world's first rocket to use an expander bleed cycle for the first stage ...
The M-1 traces its history to US Air Force studies from the late 1950s for its launch needs in the 1960s. By 1961 these had evolved into the Space Launcher System design. . The SLS consisted of a series of four rocket designs, all built around a series of solid-fuel boosters and liquid-hydrogen-powered upper stag