Search results
Results from the WOW.Com Content Network
Otoliths (sagittae) are bilaterally symmetrical, with each fish having one right and one left. Separating recovered otoliths into right and left, therefore, allows one to infer a minimum number of prey individuals ingested for a given fish species. Otolith size is also proportional to the length and weight of a fish.
Over time, there was two changes that occurred in parallel when referring to the evolution of the otolithic membrane. First, otoliths that were present in amphibians and reptiles were replaced by a structurally differentiated otolithic membrane. Second, the spindle-shaped aragonitic otoconia were replaced by calcitic barrel-shaped otoconia.
The otoliths begin to form shortly after the fish hatches. Otoliths are composed of a crystalline calcium carbonate structure, in the form of aragonite, on a protein matrix. Calcium carbonate is diffused through the endolymph cell membrane and the aragonite layers are permanently deposited in discrete increments. These increments are ...
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
Otolithes was proposed as the genus name in 1817 by Oken based on Georges Cuvier's les otolithes of 1816. Cuvier explained in 1830 that this was based on the peche-pierre, a name meaning "peach stone" which was used by French and Portuguese colonial settlers in Pondicherry and refers to the large otoliths of Johnius ruber.
This membrane is weighted with calcium carbonate-protein granules called otoliths. The otolithic membrane adds weight to the tops of the hair cells and increases their inertia. The addition in weight and inertia is vital to the utricle's ability to detect linear acceleration, as described below, and to determine the orientation of the head. [3]
These three pairs of otoliths in teleost fishes differ in form, function, size, shape, and ultrastructure. Otoliths function in fishes’ hearing, equilibrium, and acceleration. Otolith microstructural studies exist for 50 families and 135 species of fish and squid. [9] The size and shape of otoliths vary widely depending on the species.
It is probably caused when pieces that have broken off otoliths have slipped into one of the semicircular canals. In most cases, it is the posterior canal that is affected. In certain head positions, these particles shift and create a fluid wave which displaces the cupula of the canal affected, which leads to dizziness, vertigo and nystagmus.