enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:Year 11 2U Hyperbola.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Year_11_2U_Hyperbola.pdf

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  3. Hyperbolic sector - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_sector

    A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.

  4. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse.

  5. List of integrals of hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    Download QR code; Print/export Download as PDF; Printable version; In other projects ... In all formulas the constant a is assumed to be nonzero, ...

  6. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.

  7. Gudermannian function - Wikipedia

    en.wikipedia.org/wiki/Gudermannian_function

    The Gudermannian function can be thought of mapping points on one branch of a hyperbola to points on a semicircle. Points on one sheet of an n-dimensional hyperboloid of two sheets can be likewise mapped onto a n-dimensional hemisphere via stereographic projection. The hemisphere model of hyperbolic space uses such a map to represent hyperbolic ...

  8. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    In celestial mechanics, a Kepler orbit (or Keplerian orbit, named after the German astronomer Johannes Kepler) is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line.

  9. Conjugate diameters - Wikipedia

    en.wikipedia.org/wiki/Conjugate_diameters

    Apollonius of Perga gave the following construction of conjugate diameters, given the conjugate hyperbola: "If Q be any point on a hyperbola and CE be drawn from the centre parallel to the tangent at Q to meet the conjugate hyperbola in E, then (1) the tangent at E will be parallel to CQ and (2) CQ and CE will be conjugate diameters." [2]