enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector , where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The eigendecomposition of a symmetric positive semidefinite (PSD) matrix yields an orthogonal basis of eigenvectors, each of which has a nonnegative eigenvalue. The orthogonal decomposition of a PSD matrix is used in multivariate analysis , where the sample covariance matrices are PSD.

  4. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    Equivalently, the eigenvalues of are positive, and this implies that > since the determinant is the product of the eigenvalues. To prove the reverse implication, we use induction . The general form of an ( n + 1 ) × ( n + 1 ) {\displaystyle (n+1)\times (n+1)} Hermitian matrix is

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  6. Hadamard's inequality - Wikipedia

    en.wikipedia.org/wiki/Hadamard's_inequality

    A positive-semidefinite matrix P can be written as N * N, ... To prove (1), consider P =M * M where M * is the conjugate transpose of M, and let the eigenvalues of P ...

  7. Diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonally_dominant_matrix

    A Hermitian diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite. This follows from the eigenvalues being real, and Gershgorin's circle theorem. If the symmetry requirement is eliminated, such a matrix is not necessarily positive semidefinite. For example, consider

  8. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation:

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Uniqueness: is always unique and equal to (which is always hermitian and positive semidefinite). If A {\displaystyle A} is invertible, then U {\displaystyle U} is unique. Comment: Since any Hermitian matrix admits a spectral decomposition with a unitary matrix, P {\displaystyle P} can be written as P = V D V ∗ {\displaystyle P=VDV^{*}} .