Search results
Results from the WOW.Com Content Network
A real image occurs at points where rays actually converge, whereas a virtual image occurs at points that rays appear to be diverging from. Real images can be produced by concave mirrors and converging lenses, only if the object is placed further away from the mirror/lens than the focal point, and this real image is inverted. As the object ...
For the diverging lens, forward extension of converging rays toward the lens will meet the converging point, so the point is a virtual object. For a (refracting) lens, the real image of an object is formed on the opposite side of the lens while the virtual image is formed on the same side as the object. For a (reflecting) mirror, the real image ...
Incoming parallel rays are focused by a convex lens into an inverted real image one focal length from the lens, on the far side of the lens. Rays from an object at finite distance are focused further from the lens than the focal distance; the closer the object is to the lens, the further the image is from the lens.
Images of black letters in a thin convex lens of focal length f are shown in red. Selected rays are shown for letters E, I and K in blue, green and orange, respectively. E (at 2f) has an equal-size, real and inverted image; I (at f) has its image at infinity; and K (at f / 2 ) has a double-size, virtual and upright image.
The distance between an object and a lens. Real object Virtual object s i: The distance between an image and a lens. Real image Virtual image f: The focal length of a lens. Converging lens Diverging lens y o: The height of an object from the optical axis. Erect object Inverted object y i: The height of an image from the optical axis Erect image ...
The distance between an image and a lens. Real image Virtual image f: The focal length of a lens. Conversing lens Diverging lens y o: The height of an object from the optical axis. Erect object Inverted object y i: The height of an image from the optical axis Erect image Inverted image M T: The transverse magnification in imaging ( = the ratio ...
Since the entrance pupil and exit pupil are images of the aperture stop, for a real image pupil, the lateral distance of the marginal ray from the optical axis at the pupil location defines the pupil size. For a virtual image pupil, an extended line, forward along the marginal ray before the first optical element or backward along the marginal ...
For concave lenses, the focal point is on the back side of the lens, or the output side of the focal plane, and is negative in power. A lens with no optical power is called an optical window, having flat, parallel faces. The optical power directly relates to how large positive images will be magnified, and how small negative images will be ...