Search results
Results from the WOW.Com Content Network
Then, by the well-ordering principle, there is a least element ; cannot be prime since a prime number itself is considered a length-one product of primes. By the definition of non-prime numbers, n {\displaystyle n} has factors a , b {\displaystyle a,b} , where a , b {\displaystyle a,b} are integers greater than one and less than n ...
Every well-ordered set is uniquely order isomorphic to a unique ordinal number, called the order type of the well-ordered set. The well-ordering theorem, which is equivalent to the axiom of choice, states that every set can be well ordered. If a set is well ordered (or even if it merely admits a well-founded relation), the proof technique of ...
In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are ...
The original definition of ordinal numbers, found for example in the Principia Mathematica, defines the order type of a well-ordering as the set of all well-orderings similar (order-isomorphic) to that well-ordering: in other words, an ordinal number is genuinely an equivalence class of well-ordered sets.
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions.
Every well-ordered set is order-equivalent to exactly one ordinal number, by definition. The ordinal numbers are taken to be the canonical representatives of their classes, and so the order type of a well-ordered set is usually identified with the corresponding ordinal. Order types thus often take the form of arithmetic expressions of ordinals.
That such an ordinal exists and is unique is guaranteed by the fact that U is well-orderable and that the class of ordinals is well-ordered, using the axiom of replacement. With the full axiom of choice , every set is well-orderable , so every set has a cardinal; we order the cardinals using the inherited ordering from the ordinal numbers.
This is a well-ordering and hence gives an ordinal number. The definition of exponentiation can also be given by transfinite recursion on the exponent β. When the exponent β = 0, ordinary exponentiation gives α 0 = 1 for any α. For β > 0, the value of α β is the smallest ordinal greater than or equal to α δ · α for all δ < β ...