Search results
Results from the WOW.Com Content Network
In mathematics, a well-order (or well-ordering or well-order relation) on a set S is a total ordering on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the ordering is then called a well-ordered set (or woset). [1]
Considering the natural numbers as a subset of the real numbers, and assuming that we know already that the real numbers are complete (again, either as an axiom or a theorem about the real number system), i.e., every bounded (from below) set has an infimum, then also every set of natural numbers has an infimum, say .
Three well-orderings on the set of natural numbers with distinct order types (top to bottom): , +, and +. Every well-ordered set is order-equivalent to exactly one ordinal number , by definition. The ordinal numbers are taken to be the canonical representatives of their classes, and so the order type of a well-ordered set is usually identified ...
In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are ...
The original definition of ordinal numbers, found for example in the Principia Mathematica, defines the order type of a well-ordering as the set of all well-orderings similar (order-isomorphic) to that well-ordering: in other words, an ordinal number is genuinely an equivalence class of well-ordered sets.
That such an ordinal exists and is unique is guaranteed by the fact that U is well-orderable and that the class of ordinals is well-ordered, using the axiom of replacement. With the full axiom of choice , every set is well-orderable , so every set has a cardinal; we order the cardinals using the inherited ordering from the ordinal numbers.
This is a general situation in order theory: A given order can be inverted by just exchanging its direction, pictorially flipping the Hasse diagram top-down. This yields the so-called dual, inverse, or opposite order. Every order theoretic definition has its dual: it is the notion one obtains by applying the definition to the inverse order.
Pic.1: Integer numbers with the usual order Pic.2: Hasse diagram of the natural numbers ordered by divisibility Pic.3: Hasse diagram of with componentwise order ( N , ≤ ) {\displaystyle (\mathbb {N} ,\leq )} , the set of natural numbers with standard ordering, is a well partial order (in fact, a well-order ).