Search results
Results from the WOW.Com Content Network
The MATLAB/DIDO toolbox does not require a "guess" to run the algorithm. This and other distinguishing features have made DIDO a popular tool to solve optimal control problems. [4] [7] [15] The MATLAB optimal control toolbox has been used to solve problems in aerospace, [11] robotics [1] and search theory. [2]
In the geometric version of the problem, the layout of the art gallery is represented by a simple polygon and each guard is represented by a point in the polygon. A set S {\displaystyle S} of points is said to guard a polygon if, for every point p {\displaystyle p} in the polygon, there is some q ∈ S {\displaystyle q\in S} such that the line ...
The problem formulation stated above is a convention called the negative null form, since all constraint function are expressed as equalities and negative inequalities with zero on the right-hand side. This convention is used so that numerical algorithms developed to solve design optimization problems can assume a standard expression of the ...
Given the number of problems (55 in total), just a few are presented here. The test functions used to evaluate the algorithms for MOP were taken from Deb, [ 4 ] Binh et al. [ 5 ] and Binh. [ 6 ] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which ...
MATLAB (an abbreviation of "MATrix LABoratory" [22]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
Solving topology optimization problems in a discrete sense is done by discretizing the design domain into finite elements. The material densities inside these elements are then treated as the problem variables. In this case material density of one indicates the presence of material, while zero indicates an absence of material.
The case where the system dynamics are described by a set of linear differential equations and the cost is described by a quadratic function is called the LQ problem. One of the main results in the theory is that the solution is provided by the linear–quadratic regulator ( LQR ), a feedback controller whose equations are given below.
The primary application of the Levenberg–Marquardt algorithm is in the least-squares curve fitting problem: given a set of empirical pairs (,) of independent and dependent variables, find the parameters of the model curve (,) so that the sum of the squares of the deviations () is minimized: