enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Comparison of programming languages (string functions)

    en.wikipedia.org/wiki/Comparison_of_programming...

    <string>.rpartition(separator) Searches for the separator from right-to-left within the string then returns the sub-string before the separator; the separator; then the sub-string after the separator. Description Splits the given string by the right-most separator and returns the three substrings that together make the original.

  3. Longest common substring - Wikipedia

    en.wikipedia.org/wiki/Longest_common_substring

    The picture shows two strings where the problem has multiple solutions. Although the substring occurrences always overlap, it is impossible to obtain a longer common substring by "uniting" them. The strings "ABABC", "BABCA" and "ABCBA" have only one longest common substring, viz. "ABC" of length 3.

  4. Help:Manipulating strings - Wikipedia

    en.wikipedia.org/wiki/Help:Manipulating_strings

    The simplest operation is taking a substring, a snippet of the string taken at a certain offset (called an "index") from the start or end. There are a number of legacy templates offering this but for new code use {{#invoke:String|sub|string|startIndex|endIndex}}. The indices are one-based (meaning the first is number one), inclusive (meaning ...

  5. Approximate string matching - Wikipedia

    en.wikipedia.org/wiki/Approximate_string_matching

    T[y 2] is a substring of T with the minimal edit distance to the pattern P. Computing the E(x, y) array takes O(mn) time with the dynamic programming algorithm, while the backwards-working phase takes O(n + m) time. Another recent idea is the similarity join.

  6. String-searching algorithm - Wikipedia

    en.wikipedia.org/wiki/String-searching_algorithm

    A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.

  7. Boyer–Moore–Horspool algorithm - Wikipedia

    en.wikipedia.org/wiki/Boyer–Moore–Horspool...

    // Compares two strings, up to the first len characters. // Note: this is equivalent to !memcmp(str1, str2, len). function same (str1, str2, len) i:= len-1 // The original algorithm tries to play smart here: it checks for the // last character, then second-last, etc. while str1 [i] == str2 [i] if i == 0 return true i:= i-1 return false function search (needle, haystack) T:= preprocess (needle ...

  8. Longest palindromic substring - Wikipedia

    en.wikipedia.org/wiki/Longest_palindromic_substring

    Longest Palindromic Substring Part II., 2011-11-20, archived from the original on 2018-12-08. A description of Manacher’s algorithm for finding the longest palindromic substring in linear time. Akalin, Fred (2007-11-28), Finding the longest palindromic substring in linear time. An explanation and Python implementation of Manacher's linear ...

  9. Rabin–Karp algorithm - Wikipedia

    en.wikipedia.org/wiki/Rabin–Karp_algorithm

    Naively computing the hash value for the substring s[i+1..i+m] requires O(m) time because each character is examined. Since the hash computation is done on each loop, the algorithm with a naive hash computation requires O(mn) time, the same complexity as a straightforward string matching algorithm. For speed, the hash must be computed in ...