enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    Energy shares the same unit of measurement with work (Joules) because the energy from the object doing work is transferred to the other objects it interacts with when work is being done. [17] The work–energy principle states that an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done on the body ...

  3. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    In physics, the kinetic energy of an object is the form of energy ... doing work on what it hits. The kinetic energy of a moving object is equal to the work ...

  4. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  5. Mechanical energy - Wikipedia

    en.wikipedia.org/wiki/Mechanical_energy

    In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces , then the mechanical energy is constant.

  6. Units of energy - Wikipedia

    en.wikipedia.org/wiki/Units_of_energy

    In physics and chemistry, it is common to measure energy on the atomic scale in the non-SI, but convenient, units electronvolts (eV). 1 eV is equivalent to the kinetic energy acquired by an electron in passing through a potential difference of 1 volt in a vacuum. It is common to use the SI magnitude prefixes (e.g. milli-, mega- etc) with ...

  7. Kinetics (physics) - Wikipedia

    en.wikipedia.org/wiki/Kinetics_(physics)

    In physics and engineering, kinetics is the branch of classical mechanics that is concerned with the relationship between the motion and its causes, specifically, forces and torques. [ 1 ] [ 2 ] [ 3 ] Since the mid-20th century, the term " dynamics " (or " analytical dynamics ") has largely superseded "kinetics" in physics textbooks, [ 4 ...

  8. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. [1]

  9. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.