enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    Backward finite difference [ edit ] To get the coefficients of the backward approximations from those of the forward ones, give all odd derivatives listed in the table in the previous section the opposite sign, whereas for even derivatives the signs stay the same.

  3. MacCormack method - Wikipedia

    en.wikipedia.org/wiki/MacCormack_method

    The order of differencing can be reversed for the time step (i.e., forward/backward followed by backward/forward). For nonlinear equations, this procedure provides the best results. For linear equations, the MacCormack scheme is equivalent to the Lax–Wendroff method. [4]

  4. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  5. Forward–backward algorithm - Wikipedia

    en.wikipedia.org/wiki/Forwardbackward_algorithm

    The first pass goes forward in time while the second goes backward in time; hence the name forward–backward algorithm. The term forward–backward algorithm is also used to refer to any algorithm belonging to the general class of algorithms that operate on sequence models in a forward–backward manner. In this sense, the descriptions in the ...

  6. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  7. Forward algorithm - Wikipedia

    en.wikipedia.org/wiki/Forward_algorithm

    The forward and backward algorithms should be placed within the context of probability as they appear to simply be names given to a set of standard mathematical procedures within a few fields. For example, neither "forward algorithm" nor "Viterbi" appear in the Cambridge encyclopedia of mathematics.

  8. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    The discrete difference equations may then be solved iteratively to calculate a price for the option. [4] The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a ...

  9. Proximal gradient methods for learning - Wikipedia

    en.wikipedia.org/wiki/Proximal_gradient_methods...

    Proximal gradient (forward backward splitting) methods for learning is an area of research in optimization and statistical learning theory which studies algorithms for a general class of convex regularization problems where the regularization penalty may not be differentiable.