Search results
Results from the WOW.Com Content Network
Electron-withdrawing groups exert an "inductive" or "electron-pulling" effect on covalent bonds. The strength of the electron-withdrawing group is inversely proportional to the pKa of the carboxylic acid. [2] The inductive effect is cumulative: trichloroacetic acid is 1000x stronger than chloroacetic acid.
With respect to acidity, a common trend to note is that, inductively, an electron-withdrawing substituent in the vicinity of an acidic proton will lower the pKa (i.e. increase the acidity) and, correspondingly, an electron-donating substituent will raise the pKa. [7] The reorganization of charge due to field effects will have the same result.
The electron-withdrawing effect of the substituent makes ionisation easier, so successive pK a values decrease in the series 4.7, 2.8, 1.4, and 0.7 when 0, 1, 2, or 3 chlorine atoms are present. [49] The Hammett equation , provides a general expression for the effect of substituents.
If the electronegative atom (missing an electron, thus having a positive charge) is then joined to a chain of atoms, typically carbon, the positive charge is relayed to the other atoms in the chain. This is the electron-withdrawing inductive effect, also known as the -I effect. In short, alkyl groups tend to donate electrons, leading to the +I ...
Triflidic acid, with three strongly electron-withdrawing triflyl groups, has an estimated pK a well below −10. On the other end of the scale, hydrocarbons bearing only alkyl groups are thought to have pK a values in the range of 55 to 65. The range of acid dissociation constants for carbon acids thus spans over 70 orders of magnitude.
The captodative effect is the stabilization of radicals by a synergistic effect of an electron-withdrawing substituent and an electron-donating substituent. [2] [3] The name originates as the electron-withdrawing group (EWG) is sometimes called the "captor" group, whilst the electron-donating group (EDG) is the "dative" substituent. [3]
For meta-directing groups (electron withdrawing group or EWG), σ meta and σ para are more positive than σ’. (The superscript, c, in table denotes data from Hammett, 1940. [11] [page needed]) For ortho-para directing groups (electron donating group or EDG), σ’ more positive than σ meta and σ para.
The effect is used in a qualitative way and describes the electron withdrawing or releasing properties of substituents based on relevant resonance structures and is symbolized by the letter M. [2] The mesomeric effect is negative ( –M ) when the substituent is an electron-withdrawing group , and the effect is positive ( +M ) when the ...