Search results
Results from the WOW.Com Content Network
A generalized chi-square variable or distribution can be parameterized in two ways. The first is in terms of the weights w i {\displaystyle w_{i}} , the degrees of freedom k i {\displaystyle k_{i}} and non-centralities λ i {\displaystyle \lambda _{i}} of the constituent non-central chi-squares, and the coefficients s {\displaystyle s} and m ...
In statistics, the generalized Pareto distribution (GPD) is a family of continuous probability distributions.It is often used to model the tails of another distribution. It is specified by three parameters: location , scale , and shape
The generalized additive model for location, scale and shape (GAMLSS) is a semiparametric regression model in which a parametric statistical distribution is assumed for the response (target) variable but the parameters of this distribution can vary according to explanatory variables.
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense.
Type IV probability density functions (means=0, variances=1) The Type IV generalized logistic, or logistic-beta distribution, with support and shape parameters , >, has (as shown above) the probability density function (pdf):
In statistics, the generalized Dirichlet distribution (GD) is a generalization of the Dirichlet distribution with a more general covariance structure and almost twice the number of parameters. Random vectors with a GD distribution are completely neutral. [1] The density function of , …, is
The hazard function, h(s), where f(s) is a pdf and F(s) the corresponding cdf, is defined by = () Hazard functions are useful in many applications, such as modeling unemployment duration, the failure time of products or life expectancy.
In mathematics, Helly's selection theorem (also called the Helly selection principle) states that a uniformly bounded sequence of monotone real functions admits a convergent subsequence. In other words, it is a sequential compactness theorem for the space of uniformly bounded monotone functions. It is named for the Austrian mathematician Eduard ...