Search results
Results from the WOW.Com Content Network
Finding global maxima and minima is the goal of mathematical optimization. If a function is continuous on a closed interval, then by the extreme value theorem, global maxima and minima exist. Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the ...
Adequality is a technique developed by Pierre de Fermat in his treatise Methodus ad disquirendam maximam et minimam [1] (a Latin treatise circulated in France c. 1636 ) to calculate maxima and minima of functions, tangents to curves, area, center of mass, least action, and other problems in calculus.
The minimum and the maximum value are the first and last order statistics (often denoted X (1) and X (n) respectively, for a sample size of n). If the sample has outliers, they necessarily include the sample maximum or sample minimum, or both, depending on whether they are extremely high or low. However, the sample maximum and minimum need not ...
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...
Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.
Global optimization is distinguished from local optimization by its focus on finding the minimum or maximum over the given set, as opposed to finding local minima or maxima. Finding an arbitrary local minimum is relatively straightforward by using classical local optimization methods.
Finding the extrema of functionals is similar to finding the maxima and minima of functions. The maxima and minima of a function may be located by finding the points where its derivative vanishes (i.e., is equal to zero). The extrema of functionals may be obtained by finding functions for which the functional derivative is equal to zero.
As shown below, the second-derivative test is mathematically identical to the special case of n = 1 in the higher-order derivative test. Let f be a real-valued, sufficiently differentiable function on an interval I ⊂ R {\displaystyle I\subset \mathbb {R} } , let c ∈ I {\displaystyle c\in I} , and let n ≥ 1 {\displaystyle n\geq 1} be a ...