enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:Conic section interactive visualisation.svg - Wikipedia

    en.wikipedia.org/wiki/File:Conic_section...

    conic section interactive visualisation: Image title: Interactive SVG of the derivation of conic sections from cross-sections of a double cone by CMG Lee. Move left and right over the SVG image to turn the double cone. Width: 100%: Height: 100%

  3. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.

  4. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    It is also possible to describe all conic sections in terms of a single focus and a single directrix, which is a given line not containing the focus. A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e.

  5. File:Conic Sections.svg - Wikipedia

    en.wikipedia.org/wiki/File:Conic_Sections.svg

    Français : Une image SVG illustrant quatre sections coniques: cercle, ellipse, parabole et hyperbole. Polski: Grafika SVG przedstawiająca cztery rodzaje krzywych stożkowych : okrąg , elipsa , parabola i hiperbola .

  6. File:Conic sections with plane.svg - Wikipedia

    en.wikipedia.org/wiki/File:Conic_sections_with...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  7. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    A conic section with one focus on the pole and the other somewhere on the 0° ray (so that the conic's major axis lies along the polar axis) is given by: = ⁡ where e is the eccentricity and is the semi-latus rectum (the perpendicular distance at a focus from the major axis to the curve).

  8. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.

  9. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    A pencil of confocal ellipses and hyperbolas is specified by choice of linear eccentricity c (the x-coordinate of one focus) and can be parametrized by the semi-major axis a (the x-coordinate of the intersection of a specific conic in the pencil and the x-axis). When 0 < a < c the conic is a hyperbola; when c < a the conic is an ellipse.