enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discrete cosine transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_cosine_transform

    Its inverse, the type-III DCT, is correspondingly often called simply the inverse DCT or the IDCT. Two related transforms are the discrete sine transform (DST), which is equivalent to a DFT of real and odd functions, and the modified discrete cosine transform (MDCT), which is based on a DCT of overlapping data. Multidimensional DCTs (MD DCTs ...

  3. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    The DFT is also used to efficiently solve partial differential equations, and to perform other operations such as convolutions or multiplying large integers. Since it deals with a finite amount of data, it can be implemented in computers by numerical algorithms or even dedicated hardware.

  4. Discrete transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_transform

    In addition to spectral analysis of signals, discrete transforms play important role in data compression, signal detection, digital filtering and correlation analysis. [2] The discrete cosine transform (DCT) is the most widely used transform coding compression algorithm in digital media, followed by the discrete wavelet transform (DWT).

  5. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    Two-dimensional DCT frequencies from the JPEG DCT. The DCT is used in JPEG image compression, MJPEG, MPEG, DV, Daala, and Theora video compression. There, the two-dimensional DCT-II of NxN blocks are computed and the results are quantized and entropy coded. In this case, N is typically 8 and the DCT-II formula is applied to each row and column ...

  6. Finite Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Finite_Fourier_transform

    In mathematics the finite Fourier transform may refer to either . another name for discrete-time Fourier transform (DTFT) of a finite-length series. E.g., F.J.Harris (pp. 52–53) describes the finite Fourier transform as a "continuous periodic function" and the discrete Fourier transform (DFT) as "a set of samples of the finite Fourier transform".

  7. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    The development of fast algorithms for DFT can be traced to Carl Friedrich Gauss's unpublished 1805 work on the orbits of asteroids Pallas and Juno.Gauss wanted to interpolate the orbits from sample observations; [6] [7] his method was very similar to the one that would be published in 1965 by James Cooley and John Tukey, who are generally credited for the invention of the modern generic FFT ...

  8. Discrete sine transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_sine_transform

    In mathematics, the discrete sine transform (DST) is a Fourier-related transform similar to the discrete Fourier transform (DFT), but using a purely real matrix.It is equivalent to the imaginary parts of a DFT of roughly twice the length, operating on real data with odd symmetry (since the Fourier transform of a real and odd function is imaginary and odd), where in some variants the input and ...

  9. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    The inverse DTFT reconstructs the original sampled data sequence, while the inverse DFT produces a periodic summation of the original sequence. The Fast Fourier Transform (FFT) is an algorithm for computing one cycle of the DFT, and its inverse produces one cycle of the inverse DFT.