enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    "The linear complementarity problem, sufficient matrices, and the criss-cross method" (PDF). Linear Algebra and Its Applications. 187: 1– 14. doi: 10.1016/0024-3795(93)90124-7. Murty, Katta G. (January 1972). "On the number of solutions to the complementarity problem and spanning properties of complementary cones" (PDF).

  3. Cutting stock problem - Wikipedia

    en.wikipedia.org/wiki/Cutting_stock_problem

    The optimal answer requires 73 master rolls and has 0.401% waste; it can be shown computationally that in this case the minimum number of patterns with this level of waste is 10. It can also be computed that 19 different such solutions exist, each with 10 patterns and a waste of 0.401%, of which one such solution is shown below and in the picture:

  4. Benders decomposition - Wikipedia

    en.wikipedia.org/wiki/Benders_decomposition

    Benders decomposition (or Benders' decomposition) is a technique in mathematical programming that allows the solution of very large linear programming problems that have a special block structure. This block structure often occurs in applications such as stochastic programming as the uncertainty is usually represented with scenarios.

  5. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    A collection of mathematical and statistical routines developed by the Numerical Algorithms Group for multiple programming languages (C, C++, Fortran, Visual Basic, Java and C#) and packages (MATLAB, Excel, R, LabVIEW). The Optimization chapter of the NAG Library includes routines for quadratic programming problems with both sparse and non ...

  6. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function , subject to linear equality and linear inequality constraints .

  7. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.

  8. Basic solution (linear programming) - Wikipedia

    en.wikipedia.org/wiki/Basic_solution_(Linear...

    In linear programming, a discipline within applied mathematics, a basic solution is any solution of a linear programming problem satisfying certain specified technical conditions. For a polyhedron P {\displaystyle P} and a vector x ∗ ∈ R n {\displaystyle \mathbf {x} ^{*}\in \mathbb {R} ^{n}} , x ∗ {\displaystyle \mathbf {x} ^{*}} is a ...

  9. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...