Ad
related to: 100 kpa to ton m2 unit heater temperature formula
Search results
Results from the WOW.Com Content Network
ATPD: Ambient temperature (variable) and pressure (variable), dry (no humidity) BTPS: Body temperature (37 °C or 310 K) and pressure (generally same as ambient), saturated (47 mmHg or 6.2 kPa) STPD: Standard temperature (0 °C or 273 K) and pressure (760 mmHg (101.33 kPa) or 100 kPa (750.06 mmHg)), dry (no humidity)
Until 1982, STP was defined as a temperature of 273.15 K (0 °C, 32 °F) and an absolute pressure of 101.325 kPa (1 atm). Since 1982, STP is defined as a temperature of 273.15 K (0 °C, 32 °F) and an absolute pressure of 100 kPa (1 bar). Conversions between each volume flow metric are calculated using the following formulas: Prior to 1982,
Factors in bold are exact. If exact factors have more than 7 places, they are rounded and no longer exact. This convert module replaces these rounded figures with the exact figures. For example, the NIST document has 1 square mile = 2.589 988 E+06 square meters. The convert template has 1 square mile = 2,589,988.110336 square meters.
This standard is also called normal temperature and pressure (abbreviated as NTP). However, a common temperature and pressure in use by NIST for thermodynamic experiments is 298.15 K (25 °C, 77 °F) and 1 bar (14.5038 psi, 100 kPa). [4] [5] NIST also uses 15 °C (288.15 K, 59 °F) for the temperature compensation of refined petroleum products ...
Common multiple units of the pascal are the hectopascal (1 hPa = 100 Pa), which is equal to one millibar, and the kilopascal (1 kPa = 1000 Pa), which is equal to one centibar. The unit of measurement called standard atmosphere (atm) is defined as 101,325 Pa . [ 2 ]
From this energy balance, it is clear that NTU relates the temperature change of the flow with the minimum heat capacitance rate to the log mean temperature difference (). Starting from the differential equations that describe heat transfer, several "simple" correlations between effectiveness and NTU can be made. [ 2 ]
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).
A Assuming an altitude of 194 metres above mean sea level (the worldwide median altitude of human habitation), an indoor temperature of 23 °C, a dewpoint of 9 °C (40.85% relative humidity), and 760 mmHg sea level–corrected barometric pressure (molar water vapor content = 1.16%).
Ad
related to: 100 kpa to ton m2 unit heater temperature formula