Search results
Results from the WOW.Com Content Network
The phosphorus cycle is the biogeochemical cycle that involves the movement of phosphorus through the lithosphere, hydrosphere, and biosphere.Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based materials do not enter the gaseous phase readily, [1] as the main source of gaseous phosphorus ...
Natural phosphorus-bearing compounds are mostly inaccessible to plants because of the low solubility and mobility in soil. [110] Most phosphorus is very stable in the soil minerals or organic matter of the soil. Even when phosphorus is added in manure or fertilizer it can become fixed in the soil. Therefore, the natural phosphorus cycle is
Nutrients in the soil are taken up by the plant through its roots, and in particular its root hairs.To be taken up by a plant, a nutrient element must be located near the root surface; however, the supply of nutrients in contact with the root is rapidly depleted within a distance of ca. 2 mm. [14] There are three basic mechanisms whereby nutrient ions dissolved in the soil solution are brought ...
Phosphorus is a primary factor of soil fertility as it is an element of plant nutrients in the soil. It is essential for cell division and plant development, especially in seedlings and young plants. [10] However, phosphorus is becoming increasingly harder to find and its reserves are starting to be depleted due to the excessive use as a ...
There is much overlap between the terms for the biogeochemical cycle and nutrient cycle. Most textbooks integrate the two and seem to treat them as synonymous terms. [5] However, the terms often appear independently. The nutrient cycle is more often used in direct reference to the idea of an intra-system cycle, where an ecosystem functions as a ...
Plants can increase phosphorus uptake by a mutualism with mycorrhiza. [6] On some soils, the phosphorus nutrition of some conifers, including the spruces, depends on the ability of mycorrhizae to take up, and make soil phosphorus available to the tree, hitherto unobtainable to the non-mycorrhizal root. Seedling white spruce, greenhouse-grown in ...
The dry matter consists mainly of carbon, oxygen, and hydrogen. Although these three elements make up about 92% of the dry weight of the organic matter in the soil, other elements present are essential for the nutrition of plants, including nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, and many micronutrients. [1]
Soil is made up of a multitude of physical, chemical, and biological entities, with many interactions occurring among them. It is a heterogenous mixture of minerals and organic matter with variations in moisture, temperature and nutrients. Soil supports a wide range of living organisms and is an essential component of terrestrial ecology.