enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    Borrowing from complex analysis, this is sometimes called an essential singularity. The possible cases at a given value for the argument are as follows. A point of continuity is a value of for which () = = (+), as one expects for a smooth function. All the values must be finite.

  3. Regular singular point - Wikipedia

    en.wikipedia.org/wiki/Regular_singular_point

    Point a is an ordinary point when functions p 1 (x) and p 0 (x) are analytic at x = a. Point a is a regular singular point if p 1 (x) has a pole up to order 1 at x = a and p 0 has a pole of order up to 2 at x = a. Otherwise point a is an irregular singular point.

  4. Isolated singularity - Wikipedia

    en.wikipedia.org/wiki/Isolated_singularity

    In complex analysis, a branch of mathematics, an isolated singularity is one that has no other singularities close to it. In other words, a complex number z 0 is an isolated singularity of a function f if there exists an open disk D centered at z 0 such that f is holomorphic on D \ {z 0}, that is, on the set obtained from D by taking z 0 out.

  5. Essential singularity - Wikipedia

    en.wikipedia.org/wiki/Essential_singularity

    Plot of the function exp(1/z), centered on the essential singularity at z = 0.The hue represents the complex argument, the luminance represents the absolute value.This plot shows how approaching the essential singularity from different directions yields different behaviors (as opposed to a pole, which, approached from any direction, would be uniformly white).

  6. Removable singularity - Wikipedia

    en.wikipedia.org/wiki/Removable_singularity

    A graph of a parabola with a removable singularity at x = 2. In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.

  7. Singular point of a curve - Wikipedia

    en.wikipedia.org/wiki/Singular_point_of_a_curve

    Hence, it is technically more correct to discuss singular points of a smooth mapping here rather than a singular point of a curve. The above definitions can be extended to cover implicit curves which are defined as the zero set ⁠ f − 1 ( 0 ) {\displaystyle f^{-1}(0)} ⁠ of a smooth function , and it is not necessary just to consider ...

  8. Casorati–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Casorati–Weierstrass_theorem

    A short proof of the theorem is as follows: Take as given that function f is meromorphic on some punctured neighborhood V \ {z 0}, and that z 0 is an essential singularity. . Assume by way of contradiction that some value b exists that the function can never get close to; that is: assume that there is some complex value b and some ε > 0 such that ‖ f(z) − b ‖ ≥ ε for all z in V at ...

  9. Resolution of singularities - Wikipedia

    en.wikipedia.org/wiki/Resolution_of_singularities

    The singular set of x 2 = y 2 z 2 is the pair of lines given by the y and z axes. The only reasonable varieties to blow up are the origin, one of these two axes, or the whole singular set (both axes). However the whole singular set cannot be used since it is not smooth, and choosing one of the two axes breaks the symmetry between them so is not ...