Search results
Results from the WOW.Com Content Network
NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
is how one would use Fortran to create arrays from the even and odd entries of an array. Another common use of vectorized indices is a filtering operation. Consider a clipping operation of a sine wave where amplitudes larger than 0.5 are to be set to 0.5. Using S-Lang, this can be done by y = sin(x); y[where(abs(y)>0.5)] = 0.5;
Blitz++ is a C++ template class library that provides high-performance multidimensional array containers for scientific computing. Boost uBLAS J. Walter, M. Koch C++ 2000 1.84.0 / 12.2023 Free Boost Software License uBLAS is a C++ template class library that provides BLAS level 1, 2, 3 functionality for dense, packed and sparse matrices. Dlib
In C++ several linear algebra libraries exploit the language's ability to overload operators. In some cases a very terse abstraction in those languages is explicitly influenced by the array programming paradigm, as the NumPy extension library to Python, Armadillo and Blitz++ libraries do. [11] [12]
Deeplearning4j includes an n-dimensional array class using ND4J that allows scientific computing in Java and Scala, similar to the functions that NumPy provides to Python. It's effectively based on a library for linear algebra and matrix manipulation in a production environment.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Note how the use of A[i][j] with multi-step indexing as in C, as opposed to a neutral notation like A(i,j) as in Fortran, almost inevitably implies row-major order for syntactic reasons, so to speak, because it can be rewritten as (A[i])[j], and the A[i] row part can even be assigned to an intermediate variable that is then indexed in a separate expression.