enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Planetary equilibrium temperature - Wikipedia

    en.wikipedia.org/wiki/Planetary_equilibrium...

    One may assume that the planet radiates energy like a blackbody at some temperature according to the Stefan–Boltzmann law. Thermal equilibrium exists when the power supplied by the star is equal to the power emitted by the planet. The temperature at which this balance occurs is the planetary equilibrium temperature. [4] [5] [6]

  3. Daisyworld - Wikipedia

    en.wikipedia.org/wiki/Daisyworld

    The planet has a negligible atmospheric greenhouse, so its surface temperature is simply determined by... [the hypothetical star's] luminosity and its [the planet's] overall albedo [reflective power, the fraction of incident radiation reflected by the surface], which is, in turn, influenced by the coverage of the two daisy types. [4]

  4. Emissivity - Wikipedia

    en.wikipedia.org/wiki/Emissivity

    The planets are solar thermal collectors on a large scale. The temperature of a planet's surface is determined by the balance between the heat absorbed by the planet from sunlight, heat emitted from its core, and thermal radiation emitted back into space. Emissivity of a planet is determined by the nature of its surface and atmosphere. [11]

  5. Effective temperature - Wikipedia

    en.wikipedia.org/wiki/Effective_temperature

    The effective temperature of the Sun (5778 kelvins) is the temperature a black body of the same size must have to yield the same total emissive power.. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (F Bol) as the star and is defined according to the Stefan–Boltzmann law F Bol = σT eff 4.

  6. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    The temperature of a planet depends on several factors: Incident radiation from its star; Emitted radiation of the planet (for example, Earth's infrared glow) The albedo effect causing a fraction of light to be reflected by the planet; The greenhouse effect for planets with an atmosphere

  7. Albedo - Wikipedia

    en.wikipedia.org/wiki/Albedo

    Ice–albedo feedback is a positive feedback climate process where a change in the area of ice caps, glaciers, and sea ice alters the albedo and surface temperature of a planet. Ice is very reflective, therefore it reflects far more solar energy back to space than the other types of land area or open water.

  8. Bond albedo - Wikipedia

    en.wikipedia.org/wiki/Bond_albedo

    The Bond albedo (also called spheric albedo, planetary albedo, and bolometric albedo), named after the American astronomer George Phillips Bond (1825–1865), who originally proposed it, is the fraction of power in the total electromagnetic radiation incident on an astronomical body that is scattered back out into space.

  9. Idealized greenhouse model - Wikipedia

    en.wikipedia.org/wiki/Idealized_greenhouse_model

    [3] [4] [5] The planet is idealized by the model as being functionally "layered" with regard to a sequence of simplified energy flows, but dimensionless (i.e. a zero-dimensional model) in terms of its mathematical space. [6] The layers include a surface with constant temperature T s and an atmospheric layer with constant temperature T a. For ...