Search results
Results from the WOW.Com Content Network
A cut C = (S, T) is a partition of V of a graph G = (V, E) into two subsets S and T. The cut-set of a cut C = (S, T) is the set {(u, v) ∈ E | u ∈ S, v ∈ T} of edges that have one endpoint in S and the other endpoint in T. If s and t are specified vertices of the graph G, then an s – t cut is a cut in which s belongs to the set S and t ...
Let S be an (a,b)-separator, that is, a vertex subset that separates two nonadjacent vertices a and b. Then S is a minimal (a,b)-separator if no proper subset of S separates a and b. More generally, S is called a minimal separator if it is a minimal separator for some pair (a,b) of nonadjacent vertices.
A cut whose cut-set has minimum total weight, possibly restricted to cuts that separate a designated pair of vertices; they are characterized by the max-flow min-cut theorem. minor A graph H is a minor of another graph G if H can be obtained by deleting edges or vertices from G and contracting edges in G.
Multi-colored vertices are cut vertices, and thus belong to multiple biconnected components. In graph theory, a biconnected component or block (sometimes known as a 2-connected component) is a maximal biconnected subgraph. Any connected graph decomposes into a tree of biconnected components called the block-cut tree of the graph.
Cromwell (1999) forms the vertex figure by intersecting the polyhedron with a sphere centered at the vertex, small enough that it intersects only edges and faces incident to the vertex. This can be visualized as making a spherical cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this ...
A vertex cut or separating set of a connected graph G is a set of vertices whose removal renders G disconnected. The vertex connectivity κ(G) (where G is not a complete graph) is the size of a smallest vertex cut. A graph is called k-vertex-connected or k-connected if its vertex connectivity is k or greater.
A cut (,) in an undirected graph = (,) is a partition of the vertices into two non-empty, disjoint sets =.The cutset of a cut consists of the edges {:,} between the two parts. . The size (or weight) of a cut in an unweighted graph is the cardinality of the cutset, i.e., the number of edges between the two parts
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).