Search results
Results from the WOW.Com Content Network
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...
The row space is defined similarly. The row space and the column space of a matrix A are sometimes denoted as C(A T) and C(A) respectively. [2] This article considers matrices of real numbers. The row and column spaces are subspaces of the real spaces and respectively. [3]
For example, a 2,1 represents the element at the second row and first column of the matrix. In mathematics , a matrix ( pl. : matrices ) is a rectangular array or table of numbers , symbols , or expressions , with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.
Oppositions between rows and columns are then maximized, in order to uncover the underlying dimensions best able to describe the central oppositions in the data. As in factor analysis or principal component analysis , the first axis is the most important dimension, the second axis the second most important, and so on, in terms of the amount of ...
For example, if V is an m × n matrix, W is an m × p matrix, and H is a p × n matrix then p can be significantly less than both m and n. Here is an example based on a text-mining application: Let the input matrix (the matrix to be factored) be V with 10000 rows and 500 columns where words are in rows and documents are in columns. That is, we ...
Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes ...
There is a similar notion of column equivalence, defined by elementary column operations; two matrices are column equivalent if and only if their transpose matrices are row equivalent. Two rectangular matrices that can be converted into one another allowing both elementary row and column operations are called simply equivalent .
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.