Search results
Results from the WOW.Com Content Network
Crystallization is the process by which solids form, where the atoms or molecules are highly organized into a structure known as a crystal.Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas.
In biology the term 'condensation' is used much more broadly and can also refer to liquid–liquid phase separation to form colloidal emulsions or liquid crystals within cells, and liquid–solid phase separation to form gels, [1] sols, or suspensions within cells as well as liquid-to-solid phase transitions such as DNA condensation during ...
Developing protein crystals is a difficult process influenced by many factors, including pH, temperature, ionic strength in the crystallization solution, and even gravity. [3] Once formed, these crystals can be used in structural biology to study the molecular structure of the protein, particularly for various industrial or medical purposes.
Consider the average number of particles with particle properties denoted by a particle state vector (x,r) (where x corresponds to particle properties like size, density, etc. also known as internal coordinates and, r corresponds to spatial position or external coordinates) dispersed in a continuous phase defined by a phase vector Y(r,t) (which again is a function of all such vectors which ...
Biocrystallization is the formation of crystals from organic macromolecules by living organisms. [1] This may be a stress response, a normal part of metabolism such as processes that dispose of waste compounds, or a pathology. Template mediated crystallization is qualitatively different from in vitro crystallization.
As such, powder diffraction techniques, which take diffraction patterns of samples with a large number of crystals, play an important role in structural determination. Other physical properties are also linked to crystallography. For example, the minerals in clay form small, flat, platelike structures. Clay can be easily deformed because the ...
Phase transitions (phase changes) that help describe polymorphism include polymorphic transitions as well as melting and vaporization transitions. According to IUPAC, a polymorphic transition is "A reversible transition of a solid crystalline phase at a certain temperature and pressure (the inversion point) to another phase of the same chemical composition with a different crystal structure."
These have been compared with the classical theory, for example for the case of nucleation of the crystal phase in the model of hard spheres. This is a model of perfectly hard spheres in thermal motion, and is a simple model of some colloids. For the crystallization of hard spheres the classical theory is a very reasonable approximate theory. [9]