Search results
Results from the WOW.Com Content Network
Genetic variance has three major components: the additive genetic variance, dominance variance, and epistatic variance. [3] Additive genetic variance involves the inheritance of a particular allele from your parent and this allele's independent effect on the specific phenotype, which will cause the phenotype deviation from the mean phenotype.
Heritability is the proportion of variance caused by genetic factors of a specific trait in a population. [1] Falconer's formula is a mathematical formula that is used in twin studies to estimate the relative contribution of genetic vs. environmental factors to variation in a particular trait (that is, the heritability of the trait) based on ...
This comparison of genetic variability within and between populations is frequently used in applied population genetics. The values range from 0 to 1. A zero value implies complete panmixia; that is, that the two populations are interbreeding freely. A value of one implies that all genetic variation is explained by the population structure, and ...
Nucleotide diversity is a measure of genetic variation. It is usually associated with other statistical measures of population diversity, and is similar to expected heterozygosity . This statistic may be used to monitor diversity within or between ecological populations, to examine the genetic variation in crops and related species, [ 3 ] or to ...
Figure 1: Genetic distance map by Cavalli-Sforza et al. (1994) [1] Genetic distance is a measure of the genetic divergence between species or between populations within a species, whether the distance measures time from common ancestor or degree of differentiation. [2] Populations with many similar alleles have small genetic distances. This ...
The product of the relative frequencies, , is a measure of the genetic variance. The quantity pq is maximized when there is an equal frequency of each gene, when p = q {\displaystyle p=q} . In the GSM, the rate of change Δ Q {\displaystyle \Delta Q} is proportional to the genetic variation.
Two fundamental calculations are central to population genetics: allele frequencies and genotype frequencies. [1] Genotype frequency in a population is the number of individuals with a given genotype divided by the total number of individuals in the population. [ 2 ]
Next consider the sample (10 8 + 4, 10 8 + 7, 10 8 + 13, 10 8 + 16), which gives rise to the same estimated variance as the first sample. The two-pass algorithm computes this variance estimate correctly, but the naïve algorithm returns 29.333333333333332 instead of 30.