Search results
Results from the WOW.Com Content Network
An alternative terminology uses continuous parameter as being more inclusive. [1] A more restricted class of processes are the continuous stochastic processes; here the term often (but not always [2]) implies both that the index variable is continuous and that sample paths of the process are continuous. Given the possible confusion, caution is ...
Merton's portfolio problem is a problem in continuous-time finance and in particular intertemporal portfolio choice. An investor must choose how much to consume and must allocate their wealth between stocks and a risk-free asset so as to maximize expected utility .
Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.
If the model is in continuous time, the controller knows the state of the system at each instant of time. The objective is to maximize either an integral of, for example, a concave function of a state variable over a horizon from time zero (the present) to a terminal time T, or a concave function of a state variable at some future date T. As ...
A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to ...
If a continuous-time real-valued stochastic process meets certain moment conditions on its increments, then the Kolmogorov continuity theorem says that there exists a modification of this process that has continuous sample paths with probability one, so the stochastic process has a continuous modification or version.
System dynamics is a methodology and mathematical modeling technique to frame, understand, and discuss complex issues and problems. Originally developed in the 1950s to help corporate managers improve their understanding of industrial processes, SD is currently being used throughout the public and private sector for policy analysis and design.
The examples thus far have shown continuous time systems and control solutions. In fact, as optimal control solutions are now often implemented digitally , contemporary control theory is now primarily concerned with discrete time systems and solutions.