Search results
Results from the WOW.Com Content Network
The following Python code implements the Euler–Maruyama method and uses it to solve the Ornstein–Uhlenbeck process defined by d Y t = θ ⋅ ( μ − Y t ) d t + σ d W t {\displaystyle dY_{t}=\theta \cdot (\mu -Y_{t})\,{\mathrm {d} }t+\sigma \,{\mathrm {d} }W_{t}}
A substochastic matrix is a real square matrix whose row sums are all ; In the same vein, one may define a probability vector as a vector whose elements are nonnegative real numbers which sum to 1. Thus, each row of a right stochastic matrix (or column of a left stochastic matrix) is a probability vector.
In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.
In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.
Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.
The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain. [8] If each of the m Poisson processes has rate λ i and the modulating continuous-time Markov has m × m transition rate matrix R , then the MAP representation is
The converse statement is also true: If () is a Lyapunov function for all Markov chains with positive equilibrium and is of the trace-form (() = (,)) then () = (()), for some convex function f. [ 3 ] [ 4 ] For example, Bregman divergences in general do not have such property and can increase in Markov processes.
The simplest Markov model is the Markov chain.It models the state of a system with a random variable that changes through time. In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state.