Search results
Results from the WOW.Com Content Network
Newton's form has the simplicity that the new points are always added at one end: Newton's forward formula can add new points to the right, and Newton's backward formula can add new points to the left. The accuracy of polynomial interpolation depends on how close the interpolated point is to the middle of the x values of the set of points used ...
Download as PDF; Printable version; ... for example the shapes of letters in typography. ... the Newton backward interpolation formula is expressed as: () ...
The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.
In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + h / 2 ) and f ′(x − h / 2 ) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation.
The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.
Iterative methods such as Newton's method are often used to solve the implicit formula. Sometimes an explicit multistep method is used to "predict" the value of +. That value is then used in an implicit formula to "correct" the value. The result is a predictor–corrector method.
Newton's method also requires evaluating two functions per step – for the function and for its derivative – and its computational cost varies between being the same as Steffensen's method (for most functions, where calculation of the derivative is just as computationally costly as the original function).