enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Beta regression - Wikipedia

    en.wikipedia.org/wiki/Beta_regression

    Beta regression is a form of regression which is used when the response variable, , takes values within (,) and can be assumed to follow a beta distribution. [1] It is generalisable to variables which takes values in the arbitrary open interval ( a , b ) {\displaystyle (a,b)} through transformations. [ 1 ]

  3. Standardized coefficient - Wikipedia

    en.wikipedia.org/wiki/Standardized_coefficient

    In statistics, standardized (regression) coefficients, also called beta coefficients or beta weights, are the estimates resulting from a regression analysis where the underlying data have been standardized so that the variances of dependent and independent variables are equal to 1. [1]

  4. Beta distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_distribution

    In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    The inner curves represent the estimated range of values considering the variation in both slope and intercept. The outer curves represent a prediction for a new measurement. [22] Regression models predict a value of the Y variable given known values of the X variables.

  6. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".

  7. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle ...

  8. Generalized beta distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_Beta_distribution

    The function B(p,q) is the beta function. The parameter is the scale parameter and can thus be set to without loss of generality, but it is usually made explicit as in the function above. The location parameter (not included in the formula above) is usually left implicit and set to .

  9. Generalized estimating equation - Wikipedia

    en.wikipedia.org/.../Generalized_estimating_equation

    Regression beta coefficient estimates from the Liang-Zeger GEE are consistent, unbiased, and asymptotically normal even when the working correlation is misspecified, under mild regularity conditions. GEE is higher in efficiency than generalized linear models (GLMs) in the presence of high autocorrelation. [ 1 ]