Search results
Results from the WOW.Com Content Network
The attractive force draws molecules closer together and gives a real gas a tendency to occupy a smaller volume than an ideal gas. Which interaction is more important depends on temperature and pressure (see compressibility factor). In a gas, the distances between molecules are generally large, so intermolecular forces have only a small effect.
[5] [18] This large band gap (compared to germanium at 0.7 eV) [8] is due to the weak intermolecular interactions, which result in low charge carrier mobility. Some molecular solids exhibit electrical conductivity, such as TTF-TCNQ with ρ = 5 x 10 2 Ω −1 cm −1 but in such cases orbital overlap is evident in the crystal structure ...
Deviations of the compressibility factor, Z, from unity are due to attractive and repulsive intermolecular forces. At a given temperature and pressure, repulsive forces tend to make the volume larger than for an ideal gas; when these forces dominate Z is greater than unity. When attractive forces dominate, Z is less than unity.
Intermolecular forces such as Van der Waals forces, hydrogen bonds, and dipole–dipole interactions are typically not sufficiently strong to hold two apparently conformal rigid bodies together, since the forces drop off rapidly with distance, [2] and the actual area in contact between the two bodies is small due to surface roughness and minor imperfections.
After the explanation of van der Waals forces by Fritz London, several scientists soon realised that his definition could be extended from the interaction of two molecules with induced dipoles to macro-scale objects by summing all of the forces between the molecules in each of the bodies involved.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In chemistry, sigma hole interactions (or σ-hole interactions) are a family of intermolecular forces that can occur between several classes of molecules and arise from an energetically stabilizing interaction between a positively-charged site, termed a sigma hole, and a negatively-charged site, typically a lone pair, on different atoms that are not covalently bonded to each other. [1]