Search results
Results from the WOW.Com Content Network
The monomial basis also forms a basis for the vector space of polynomials. After all, every polynomial can be written as a 0 + a 1 x 1 + a 2 x 2 + ⋯ + a n x n {\displaystyle a_{0}+a_{1}x^{1}+a_{2}x^{2}+\cdots +a_{n}x^{n}} for some n ∈ N {\displaystyle n\in \mathbb {N} } , which is a linear combination of monomials.
One of the basic principles of algebra is that one can multiply both sides of an equation by the same expression without changing the equation's solutions. However, strictly speaking, this is not true, in that multiplication by certain expressions may introduce new solutions that were not present before. For example, consider the following ...
An antonym is one of a pair of words with opposite meanings. Each word in the pair is the antithesis of the other. A word may have more than one antonym. There are three categories of antonyms identified by the nature of the relationship between the opposed meanings.
Group (mathematics) Halting problem. insolubility of the halting problem; Harmonic series (mathematics) divergence of the (standard) harmonic series; Highly composite number; Area of hyperbolic sector, basis of hyperbolic angle; Infinite series. convergence of the geometric series with first term 1 and ratio 1/2; Integer partition; Irrational ...
A projective basis is + points in general position, in a projective space of dimension n. A convex basis of a polytope is the set of the vertices of its convex hull. A cone basis [5] consists of one point by edge of a polygonal cone. See also a Hilbert basis (linear programming).
It has two bases, which are the sets {(0,1),(2,0)} , {(0,3),(2,0)}. These are the only independent sets that are maximal under inclusion. The basis has a specialized name in several specialized kinds of matroids: [1] In a graphic matroid, where the independent sets are the forests, the bases are called the spanning forests of the graph.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
These results include previously proved theorems, axioms, and—in case of abstraction from nature—some basic properties that are considered true starting points of the theory under consideration. [1] Mathematics is essential in the natural sciences, engineering, medicine, finance, computer science, and the social sciences. Although ...