enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Peres–Horodecki criterion - Wikipedia

    en.wikipedia.org/wiki/Peres–Horodecki_criterion

    As the transposition map preserves eigenvalues, the spectrum of () is the same as the spectrum of , and in particular () must still be positive semidefinite. Thus must also be positive semidefinite. This proves the necessity of the PPT criterion.

  3. Covariance function - Wikipedia

    en.wikipedia.org/wiki/Covariance_function

    A function is a valid covariance function if and only if [2] this variance is non-negative for all possible choices of N and weights w 1, ..., w N. A function with this property is called positive semidefinite.

  4. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    Current events; Random article; About Wikipedia; Contact us; Contribute Help; ... In mathematics, positive semidefinite may refer to: Positive semidefinite function;

  5. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant:

  6. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    If the diagonal elements of D are real and non-negative then it is positive semidefinite, and if the square roots are taken with the (+) sign (i.e. all non-negative), the resulting matrix is the principal root of D. A diagonal matrix may have additional non-diagonal roots if some entries on the diagonal are equal, as exemplified by the identity ...

  7. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    This implies that at a local minimum the Hessian is positive-semidefinite, and at a local maximum the Hessian is negative-semidefinite. For positive-semidefinite and negative-semidefinite Hessians the test is inconclusive (a critical point where the Hessian is semidefinite but not definite may be a local extremum or a saddle point).

  8. Diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonally_dominant_matrix

    A Hermitian diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite. This follows from the eigenvalues being real, and Gershgorin's circle theorem. If the symmetry requirement is eliminated, such a matrix is not necessarily positive semidefinite. For example, consider

  9. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation: