Search results
Results from the WOW.Com Content Network
In all other cases it has a Hamiltonian cycle. [6] When n is congruent to 3 modulo 6 G(n, 2) has exactly three Hamiltonian cycles. [7] For G(n, 2), the number of Hamiltonian cycles can be computed by a formula that depends on the congruence class of n modulo 6 and involves the Fibonacci numbers. [8]
It implies that computing, up to the -th power of , the Hamiltonian cycle polynomial of a unitary n×n-matrix over the infinite extension of any ring of characteristic q (not necessarily prime) by the formal variable is a # P-complete problem if isn't 2 and computing the Hamiltonian cycle polynomial of a -semi-unitary matrix (i.e. an n×n ...
A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...
Print/export Download as PDF; Printable version; In other projects ... Help. Pages in category "Hamiltonian paths and cycles" The following 23 pages are in this ...
A graph that can be proven non-Hamiltonian using Grinberg's theorem. In graph theory, Grinberg's theorem is a necessary condition for a planar graph to contain a Hamiltonian cycle, based on the lengths of its face cycles. If a graph does not meet this condition, it is not Hamiltonian.
A fundamental cycle basis may be formed from any spanning tree or spanning forest of the given graph, by selecting the cycles formed by the combination of a path in the tree and a single edge outside the tree. Alternatively, if the edges of the graph have positive weights, the minimum weight cycle basis may be constructed in polynomial time.
A 2-vertex-connected graph, its square, and a Hamiltonian cycle in the square. In graph theory, a branch of mathematics, Fleischner's theorem gives a sufficient condition for a graph to contain a Hamiltonian cycle. It states that, if is a 2-vertex-connected graph, then the square of is Hamiltonian.
The Nauru graph [1] has LCF notation [5, –9, 7, –7, 9, –5] 4.. In the mathematical field of graph theory, LCF notation or LCF code is a notation devised by Joshua Lederberg, and extended by H. S. M. Coxeter and Robert Frucht, for the representation of cubic graphs that contain a Hamiltonian cycle.