Search results
Results from the WOW.Com Content Network
In the above equations, (()) is the exterior penalty function while is the penalty coefficient. When the penalty coefficient is 0, f p = f . In each iteration of the method, we increase the penalty coefficient p {\displaystyle p} (e.g. by a factor of 10), solve the unconstrained problem and use the solution as the initial guess for the next ...
The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.
[3] [4] The drift-plus-penalty method can also be used to minimize the time average of a stochastic process subject to time average constraints on a collection of other stochastic processes. [5] This is done by defining an appropriate set of virtual queues. It can also be used to produce time averaged solutions to convex optimization problems ...
These amount to only 14 equations (10 from the field equations and 4 from the continuity equation) and are by themselves insufficient for determining the 20 unknowns (10 metric components and 10 stress–energy tensor components). The equations of state are missing. In the most general case, it's easy to see that at least 6 more equations are ...
A solution to the relaxed problem is an approximate solution to the original problem, and provides useful information. The method penalizes violations of inequality constraints using a Lagrange multiplier, which imposes a cost on violations. These added costs are used instead of the strict inequality constraints in the optimization.
A powerful tool in physics is the concept of dimensional analysis and scaling laws. By examining the physical effects present in a system, we may estimate their size and hence which, for example, might be neglected. In some cases, the system may not have a fixed natural length or time scale, while the solution depends on space or time.
Examples of the kinds of solutions that are found perturbatively include the solution of the equation of motion (e.g., the trajectory of a particle), the statistical average of some physical quantity (e.g., average magnetization), and the ground state energy of a quantum mechanical problem. Examples of exactly solvable problems that can be used ...
The inverse square law behind the Kepler problem is the most important central force law. [1]: 92 The Kepler problem is important in celestial mechanics, since Newtonian gravity obeys an inverse square law. Examples include a satellite moving about a planet, a planet about its sun, or two binary stars about each other.