Search results
Results from the WOW.Com Content Network
In thermodynamics, the compressibility factor (Z), also known as the compression factor or the gas deviation factor, describes the deviation of a real gas from ideal gas behaviour. It is simply defined as the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same temperature and pressure .
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...
The compressibility factor is defined as = where p is the pressure of the gas, T is its temperature, and is its molar volume, all measured independently of one another. In the case of an ideal gas, the compressibility factor Z is equal to unity, and the familiar ideal gas law is recovered:
compressibility effects; variable specific heat capacity; van der Waals forces; non-equilibrium thermodynamic effects; issues with molecular dissociation and elementary reactions with variable composition; For most applications, such a detailed analysis is unnecessary, and the ideal gas approximation can be used with reasonable accuracy.
Table data obtained from CRC Handbook of Chemistry and Physics 44th ed. Annotation "(s)" indicates equilibrium temperature of vapor over solid. Otherwise temperature is equilibrium of vapor over liquid.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The compressibility factor is a dimensionless quantity which is equal to 1 for ideal gases and deviates from unity for increasing levels of non-ideality. [ 9 ] Several non-ideal models exist, from the simplest cubic equations of state (such as the Van der Waals [ 4 ] [ 10 ] and the Peng-Robinson [ 11 ] models) up to complex multi-parameter ones ...
The virial expansion is a model of thermodynamic equations of state.It expresses the pressure P of a gas in local equilibrium as a power series of the density.This equation may be represented in terms of the compressibility factor, Z, as = + + + This equation was first proposed by Kamerlingh Onnes. [1]